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Pixel resolution control in numerical reconstruction
of digital holography
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A new method for resolution control in numerical reconstruction of digital holography is proposed. The wave
field on a tilted or vertical plane can be reconstructed without being subject to the minimum object-to-
hologram distance requirement, and the pixel resolution can be easily controlled by adjusting the position of
a transitional plane. The proposed method solves the problem of pixel resolution control for small object-to-
hologram distances and is especially useful for multicolor, multiwavelength digital holography and metro-
logical applications. Experimental results are presented to verify the idea. © 2006 Optical Society of America
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Digital holography (DH) is a fast-growing research
subject that has drawn increasing attention.1 It is
very important to control the pixel resolution in nu-
merical reconstruction of DH in many applications
such as automatic focus and deformation tracking,2

multicolor DH,3,4 wavelength-scanning digital inter-
ference holography (WSDIH) for tomographic
imaging,5 or multiwavelength metrology,6 where the
wave field (amplitude or phase maps) at different po-
sitions, from different wavelengths, or even from dif-
ferent cameras needs to be compared or combined.
The same requirement arises in variable tomogra-
phic scanning,7 where the object field is recon-
structed in a number of selected tilted planes from a
series of holograms recorded with different wave-
lengths, and the numerical superposition of all the
tilted object fields results in a short coherence length.

The Fresnel diffraction formula (FDF) is popularly
used in DH; however its pixel resolution will increase
in proportion to the reconstruction distance. The
Fresnel approximation condition requires an object-
to-hologram distance large enough to guarantee pre-
cise reconstruction, but the FDF may work well even
if the approximation condition is not strictly applied.5

However, in numerical implementation the FDF is
also subject to a minimum object-to-hologram dis-
tance limitation (or zmin requirement): otherwise,
aliasing occurs. The zmin requirement must be guar-
anteed in any case in the FDF, and zmin is the dis-
tance at which the reconstructed plane has the same
resolution as the hologram. Since it is such an impor-
tant characteristic for the FDF and its resolution
analysis, the zmin requirement is the main concern in
this Letter. The FDF can also be implemented as a
convolution, which can be used within the zmin dis-
tance. However, the convolution method (CM) does
not work if the reconstruction plane is close to the ho-
logram plane.5 Note that the CM here means the con-
volution implementation of the FDF; some research-
ers may define the CM as a form similar to the
angular spectrum method1 (ASM); however, both the
CM and the ASM fix the pixel resolution at that of
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the CCD camera. A zero padding method8 was pro-
posed to control the resolution for the FDF, where the
new resolution is decreased by adding more zeros to
increase the total pixel number. However, this
method cannot be used to adjust the pixel resolution
for a distance smaller than zmin. A double-Fresnel-
transform method9 (DFTM) was also recently pro-
posed to adjust the reconstruction pixel by introduc-
ing a transitional plane (TP) and implementing the
FDF twice. The final resolution is proportional to the
ratio �z2� / �z1�, where �z2� is the distance from the TP to
the destination plane (DP) and �z1� is the distance
from the hologram to the TP, with �z1�, �z2��zmin. If
the object-to-hologram distance is small, the above
ratio can be adjusted only in a limited range. Specifi-
cally, the DFTM can not be used for resolution control
if the DP is close to the hologram. In this Letter we
propose an alternative approach to control the pixel
resolution in digital holography. The wave field on ei-
ther a variable tilted or vertical plane can be recon-
structed with adjustable resolution, and the recon-
struction distance can be any small distance without
being subject to the zmin limitation, which is a unique
capability not available in any other existing recon-
struction algorithms.

If the reconstruction distance is large enough that
the Fresnel approximation condition can be assumed,
the wave distribution on a variable tilted xo−yo
plane, with its normal tilted at an angle � in the y–z
plane as in Fig. 1(a), can be calculated as7

Fig. 1. (Color online) (a) Reconstruction of the wave field
on a tilted destination plane (DP); (b) resolution control by

introducing a transitional plane (TP).
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where o�x ,y� is the object wave information extracted
from the hologram plane at the z=0 plane, k is the
wavenumber given by k=2� /�, E0 is a constant, and
ro= �zo

2+xo
2+yo

2�1/2. In the discrete implementation
of Eq. (1), the resolution of the reconstructed plane
�xo ,yo� is determined as
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N�x	, �yo = 	 �z

N�y cos �
	 , �2�

where �xo and �yo are the resolutions of the tilted
plane, �x and �y (equal to �x) are the resolutions of
the hologram plane, and N�N is the array size of a
square area on the CCD. Equation (1) is called the
tilted Fresnel diffraction formula (TFDF) in this Let-
ter. Note that if the tilted angle � is equal to zero,
then it becomes the well-known FDF. In particular,
aliasing occurs during numerical implementation if
�z��zmin=N��x�2 /�, which sets the minimum object-
to-hologram distance.

However, a small object-to-hologram distance is
preferred in some optical systems. For example, a
system can be made more compact, or as in a WSDIH
system, tomographic images with higher signal-to-
noise ratios can be achieved if the object is close to
focus. Thus the above algorithm cannot be directly
used for reconstruction. In order to solve this prob-
lem, a transitional reconstruction plane is intro-
duced, and the wave field on the TP is reconstructed
by use of the ASM, which has the great advantage of
reconstructing wave fields close to the hologram
plane, even at distances down to zero. First, the ob-
ject angular spectrum at the hologram plane,
S�kx ,ky ;0�, is obtained by taking the Fourier trans-
form of the object wave o�x ,y ;0�, where kx and ky are
corresponding spatial frequencies of x and y. The TP

Fig. 2. Apparatus for the digital interference holography
system.
is introduced opposite to the DP on the z axis, as
shown in Fig. 1(b). The angular spectrum of the TP
(at z1), S�kx ,ky ;z1�, can be calculated as
S�kx ,ky ;0�exp�ikzz1�, with kz= �k2−kx

2−ky
2�1/2. Finally,

the complex wave field on the TP, o�x ,y ;z1�, can be
calculated from the inverse Fourier transform of
S�kx ,ky ;z1�. The resolution of the reconstructed TP is
also �x, the same as that of the hologram plane.

Second, the wave distribution in the tilted (or ver-
tical) DP is reconstructed directly from the TP by use
of Eq. (1), and the pixel resolution at the DP is given
as

�xo = 	 �z2

N�x	 = 	 z2

zmin
	�x, �yo =

�xo

cos �
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where z2=zo−z1 is the distance from the TP to the
center of the DP and zmin=N��x�2 /� as defined above;
thus the pixel resolution can be easily adjusted by se-
lecting a proper z1 for the TP. Note that z1 is normally
selected to satisfy �z2��zmin. However the distance
from the DP to the hologram, or the original object-
to-hologram distance �zo�, can be any small distance
without being limited by the minimum distance re-
quirement. Of course, if the original object-to-
hologram distance �zo� is larger than zmin, the TP can
also be placed on the positive z axis. Theoretically,
the new resolution �xo can be any value greater than
�x.

Experiments are performed to verify the effective-
ness of the proposed algorithm. Figure 2 shows an
off-axis digital holographic setup based on a Michel-
son interferometer.7 The collimated plane wave from
a Coherent 699 ring dye laser is focused by lens L1
onto the focal point F1 or F2. Point F2 is also the
front focus of objective L2, so the object is illuminated
with a collimated beam. Plane S is imaged to the
CCD camera by lens L2. In the reference arm the
beam is also collimated by lens L3, which results in a
magnified image at the CCD camera of an interfer-
ence pattern that would exist at S if the object wave
were superposed with a plane wave there. Aperture
AP is placed in the focal plane of L2 to control the
size of the object angular spectrum captured in the
CCD camera.

In our experiment the system images a surface of a
25 cent coin, containing three letters “IBE” within a
2.5 mm�2.5 mm area of 300�300 pixels; thus the
resolution of the hologram is 8.3 �m. The coin is
slightly tilted with a small angle �=4° to the holo-
gram plane. The wavelength of the dye laser is
580 nm. The reconstruction distance zo, representing
the distance from the object to plane S in Fig. 2 is
about 0.1 mm. In order to use FDF for reconstruc-
tion, the zmin required for the system is 35.9 mm,
which is much larger that the actual zo=0.1 mm in
the setup. The reconstruction results of Figs. 3(a) and
3(b) clearly show that neither the FDF nor the CM
works in this case. Obviously, the zero padding
method does not work either, since it is based on the
FDF and subject to the zmin requirement. A direct re-
construction from the ASM gives a proper result, as

shown in Fig. 3(c). However, the reconstructed pixel
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resolution in both directions is fixed as 8.3 �m and
cannot be adjusted as in the CM, and the reconstruc-
tion planes are all parallel to the hologram plane. For
a small object-to-hologram distance as above ��z0�
�zmin�, the DFTM can be used for resolution control
with a scheme similar to that in Fig. 1(b) but requires
�z1��zmin, and the new resolution is given as �1
+ �z0 /z1���x. Obviously, even if z1 is not at infinity, but
if �z0� is small, the DFTM still cannot be used for reso-
lution control. Figure 3(d) shows a reconstruction by
the DFTM with the TP placed at z1=−35.9 mm; one
can hardly see any resolution difference between
Figs. 3(d) and 3(c).

With the algorithm proposed in this Letter, the
pixel resolution can be easily adjusted by changing
the position of the TP. For example, if the TP is intro-
duced at z1=−53.8 mm and the rotation angle is set
to be �=0°, the reconstructed image is shown as Fig.
3(e) with �xo, �yo equal to 12.5 �m. Figure 3(f) shows
another reconstruction with �xo, �yo equal to
17.7 �m when z1=−71.7 mm is used. Since either the
hologram or the TP is a sampled lattice, nonoverlap-
ping higher-order terms of diffraction may appear in
a DP of larger resolution, as shown in Figs. 3(e) and

Fig. 3. (Color online) Reconstruction from the (a) FDF, (b)
CM, (c) ASM, and (d) DFTM; (e) and (f) are the reconstruc-
tions of the proposed algorithm with the pixel resolutions
�xo, �yo equal to 12.5 and 17.7 �m, respectively.

Fig. 4. (Color online) Contour images of the coin at 60 �m
axial distance intervals with (a) �=0° and (b) �=4° in
reconstruction.
3(f). The rectangle in the figure shows the first-order
reconstruction, which is of the main interest and can
be easily extracted, since its image size is determined
by the new resolution and its position can be pre-
cisely controlled by the shift of the angular spectrum.
Of course, if the conjugate spectrum of the object is
not completely filtered out for off-axis holography, a
portion of the conjugate image will also appear as a
residue in the reconstruction.

A direct application of the proposed algorithm is
in WSDIH. For the same object at zo=0.1 mm as
above, for example, if the above process is repeated
by using 11 different wavelengths from a range of
580.0 to 585.0 nm, and all the reconstructed wave
fields are overlapped with the same pixel resolution
of 8.3 �m, tomographic images can be achieved with
a 60 �m axial resolution according to Ref. 7. Figure
4(a) shows several contour images parallel to the ho-
logram plane, since �=0° is used in the algorithm.
Figure 4(b) shows the contour images when the re-
construction planes are tilted with �=4° in recon-
struction. One can clearly see that the letters on the
coin are now either all highlighted or all darkened,
for they are located in the same scanning plane. Note
that since the object distance �zo� is so small com-
pared with zmin, it is impossible to use any other
available algorithms directly for tilted tomographic
reconstruction. However, with the proposed algo-
rithm variable tomographic scanning is possible, and
the pixel resolution can be easily adjusted.

In conclusion, we have shown that wave fields on a
tilted plane (or a vertical plane) can be reconstructed
near the hologram plane without being subject to the
minimum object-to-hologram requirement, and the
pixel resolution can be easily controlled. The pro-
posed algorithm would be extremely useful for WS-
DIH, multicolor holograms, and metrological applica-
tions where wave fields of different resolutions need
to be compared or combined. It makes pixel resolu-
tion control possible, especially when a small object-
to-hologram distance is preferred in the system.
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